翻訳と辞書
Words near each other
・ Quasi-elemental
・ Quasi-empirical method
・ Quasi-empiricism in mathematics
・ Quasi-experiment
・ Quasi-fibration
・ Quasi-finite field
・ Quasi-finite morphism
・ Quasi-foreign corporation
・ Quasi-Frobenius Lie algebra
・ Quasi-Frobenius ring
・ Quasi-Fuchsian group
・ Quasi-geostrophic equations
・ Quasi-harmonic approximation
・ Quasi-Hilda comet
・ Quasi-homogeneous polynomial
Quasi-Hopf algebra
・ Quasi-identifier
・ Quasi-invariant measure
・ Quasi-irreversible inhibitor
・ Quasi-isometry
・ Quasi-isomorphism
・ Quasi-judicial body
・ Quasi-judicial proceedings
・ Quasi-legislative capacity
・ Quasi-Lie algebra
・ Quasi-likelihood
・ Quasi-linkage equilibrium
・ Quasi-market
・ Quasi-maximum likelihood
・ Quasi-median networks


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-Hopf algebra : ウィキペディア英語版
Quasi-Hopf algebra
A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989.
A ''quasi-Hopf algebra'' is a quasi-bialgebra \mathcal = (\mathcal, \Delta, \varepsilon, \Phi) for which there exist \alpha, \beta \in \mathcal and a bijective antihomomorphism ''S'' (antipode) of \mathcal such that
: \sum_i S(b_i) \alpha c_i = \varepsilon(a) \alpha
: \sum_i b_i \beta S(c_i) = \varepsilon(a) \beta
for all a \in \mathcal and where
:\Delta(a) = \sum_i b_i \otimes c_i
and
:\sum_i X_i \beta S(Y_i) \alpha Z_i = \mathbb,
:\sum_j S(P_j) \alpha Q_j \beta S(R_j) = \mathbb.
where the expansions for the quantities \Phiand \Phi^ are given by
:\Phi = \sum_i X_i \otimes Y_i \otimes Z_i
and
:\Phi^= \sum_j P_j \otimes Q_j \otimes R_j.
As for a quasi-bialgebra, the property of being quasi-Hopf is preserved under twisting.
== Usage ==

Quasi-Hopf algebras form the basis of the study of Drinfeld twists and the representations in terms of F-matrices associated with finite-dimensional irreducible representations of quantum affine algebra. F-matrices can be used to factorize the corresponding R-matrix. This leads to applications in Statistical mechanics, as quantum affine algebras, and their representations give rise to solutions of the Yang-Baxter equation, a solvability condition for various statistical models, allowing characteristics of the model to be deduced from its corresponding quantum affine algebra. The study of F-matrices has been applied to models such as the Heisenberg XXZ model in the framework of the algebraic Bethe ansatz. It provides a framework for solving two-dimensional integrable models by using the Quantum inverse scattering method.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-Hopf algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.